

GUILIANI STREAMING EDITOR (GSE)
USER MANUAL

HOW TO...

• Start a new project

• Build a Graphical User Interface

• Run a simulation of a project

• Use standard Widgets and customize them

• Manage Images, Fonts, Sounds, Texts

• Create multiple language applications

P a g e | 2

Contents

0. DISCLAIMER .. 4

1. INTRODUCTION ... 4

1.1. WHAT IS GUILIANI? ... 4
1.2. WHAT IS GUILIANI STREAMING EDITOR (GSE)? .. 5
1.2.1. MAIN FEATURES OF GUILIANI STREAMING EDITOR .. 5
1.2.2. THE WORKFLOW WITH GUILIANI ... 6
1.3. AN INTRODUCTION TO THE PRINCIPLES OF GUILIANI .. 6
1.3.1. STREAMING AND THE STREAMRUNTIME ... 6
1.3.2. RESOURCE MANAGEMENT ... 7
1.3.3. COMMAND OBJECTS ... 7

2. THE MENU BAR ... 8

2.1. THE FILE MENU ... 8
2.1.1. NEW PROJECT .. 8
2.1.2. OPEN PROJECT .. 9
2.1.3. RECENT PROJECTS ... 9
2.1.4. NEW DIALOG .. 10
2.1.5. SAVE PROJECT ... 10
2.1.6. SETTINGS ... 11
2.1.7. REQUIREMENTS .. 12
2.1.8. RUN SIMULATION .. 13
2.1.9. QUIT .. 14
2.2. THE EDIT MENU .. 14
2.2.1. FIND ... 14
2.3. THE LAYOUT MENU ... 15
2.4. THE RESOURCES MENU... 16
2.4.1. MANAGE IMAGES .. 16
2.4.2. MANAGE TEXTS .. 17
2.4.3. MANAGE FONTS .. 18
2.4.4. MANAGE SOUNDS ... 18
2.4.5. MANAGE OTHER RESOURCES .. 19
2.4.6. MANAGE SETS .. 20
2.4.7. IMPORT 3D DATA FILE ... 21
2.4.8. EXPORT ... 22
2.4.9. IMPORT .. 23
2.4.10. FIND UNUSED RESOURCE-IDS .. 24
2.5. CUSTOM EXTENSION ... 24
2.6. THE WINDOWS MENU .. 24
2.7. THE HELP MENU ... 25

3. THE WORKSPACE WINDOW ... 26

4. THE DIALOG WINDOW ... 26

5. THE ATTRIBUTES WINDOW .. 27

5.1. IMAGES .. 27
5.2. TEXTS .. 27
5.3. FONTS.. 28
5.4. COMMANDS .. 28
5.5. BEHAVIOURS .. 28
5.6. BASIC OBJECT SPECIFIC ATTRIBUTES ... 29
5.6.1. POSITION ... 29
5.6.2. WIDTH AND HEIGHT ... 29
5.6.3. FOCUSABLE, GRAYED OUT, DISABLED AND INVISIBLE ... 29
5.6.4. BEHAVIOURCLASSID ... 29
5.6.5. LAYOUTERCLASSID .. 29
5.6.6. OBJECT ID ... 30

6. THE OBJECT HIERARCHY WINDOW .. 30

P a g e | 3

7. THE CONTROLS WINDOW ... 30

7.1. IMAGE .. 30
7.2. BUTTON ... 31
7.3. TEXT FIELD ... 31
7.4. CHECK BOX AND RADIO BUTTON ... 31
7.5. ELEMENTS BUTTON ... 31
7.6. ICON BUTTON .. 31
7.7. HORIZONTAL AND VERTICAL SLIDER ... 32
7.8. PROGRESS BAR .. 32
7.9. INPUT FIELD .. 32
7.10. COMBO BOX ... 33
7.11. RADIO BUTTON GROUP .. 33
7.12. COMPOSITE OBJECT .. 33
7.13. REPOSITION COMPOSITE ... 33
7.14. SCROLL VIEW ... 34
7.15. CENTER FOCUS CONTAINER... 34
7.16. CAROUSEL ... 34
7.17. ANIMATED IMAGE .. 34
7.18. IMAGE STACK .. 34
7.19. SCROLLING TEXT FIELD ... 35
7.20. 3D SCENE .. 35
7.21. EXAMPLE CONTROL ... 35

8. THE CONSOLE WINDOW ... 36

9. TOOL TIPS ... 36

10. CONTACTS .. 37

P a g e | 4

0. Disclaimer

TES Electronic Solutions GmbH
Hanauer Landstraße 328-330
60314 Frankfurt am Main
Germany

Phone +49 (0)69 1 53 92 12 29
Fax +49 (0)69 1 53 92 12 15

support@guiliani.de

www.guiliani.de

1. Introduction

Welcome to Guiliani and the Guiliani Streaming Editor. Guiliani is your solution for graphical user
interfaces (GUI) on embedded systems, which combines the comfort of a PC based development tool-
chain with the benefits of a highly-optimized software framework that was specifically designed for use
on embedded hardware.

Profit from a mature software that has been used successfully for years in tens of thousands of devices
already and start evaluating GUILIANI now!

1.1. What is Guiliani?

Guiliani is the abbreviation of: Graphical User Interface, Light and Innovative with Animations.

Guiliani is a C++ software framework enabling creation of visually appealing, platform independent GUI’s
for desktop, mobile and embedded systems.

Guiliani adopts the philosophy of “write once”, “compile & run” on target hardware. Once an application
has been developed, it can run natively on supported target platforms. When using Guiliani the usual
development workflow is to design the application on a PC and target a set of embedded platforms for
production release, like for example a PocketPC running WinCE or a Smartphone running Linux,.

Guiliani features very high quality visual appearance using sub-pixel rendering, including advanced
functionality such as alpha blending and anti-aliasing, making optimum use of the underlying graphics
API. This enables development of appealing GUIs for applications running on a wide range of embedded
devices, ranging from cost-optimized to high-end hardware platforms.

mailto:support@guiliani.de
http://www.guiliani.de/

P a g e | 5

1.2. What is Guiliani Streaming Editor (GSE)?

The streaming editor is a comprehensive tool for Artist, Interaction Designers and Developers to create
and develop intuitive user interface with the ability to rapid prototype and deploy on embedded targets.
The streaming editor is built using Guiliani and supports all features that are integrated into Guiliani such
as high portability, support of different OS (e.g. Windows, Linux), support for multiple languages etc.

The streaming editor approaches GUI development in a very easy way. The SDK includes the editor
itself with its WYSIWYG capabilities, a run-time environment to simulate the developed user interface, a
resource generator for exporting the generated resources and the Guiliani C++ HMI Framework for
application and event binding.

1.2.1. Main Features of Guiliani Streaming
Editor

 Support of standard widgets, including property editor

 Resource Manager to manage Images, Sounds and Movies

 Language support

 Fonts

 Built-in Animations

 Object hierarchy tree browser

 Workspace management

 Export Engine

 Guiliani runtime engine for multi-platform GUI simulation

 Font support through Freetype, Bitmap Fonts or Cleartype

 Interaction editor (e.g. Switch dialogs, focus, animations)

 Text layouter

 Drag & Drop

 Export functionality

 Expandability (e.g. custom animations, custom widgets)

P a g e | 6

1.2.2. The workflow with Guiliani

1. Artist creates HMI graphics (e.g. bitmap graphics for GUI background or buttons).
2. Interaction designer stitches together the event based application flow.
3. GSE’s resource generator creates XML & Resources files (.h, .lng, .png, jpeg).
4. Programmer can visualize the GUI interaction using these resources and Guiliani the run-time

executable.
5. The produced resources can be exported to an embedded target and visualized using the run-

time port (StreamRuntime,exe).
6. Developer programs the application logic and binds data to the GUI
7. Resulting GUI and application on the target

1.3. An introduction to the principles of
Guiliani

This chapter shall give a brief introduction into the core concepts of Guiliani. If you are interested in
learning more about them and the technical concepts involved in using them, please refer to the Guiliani
documentation.

1.3.1. Streaming and the StreamRuntime

Streaming means the reconstruction of a GUI at runtime from a descriptive file. This file can be of
arbitrary format - usually this will be an XML description (for human readability) or proprietary binary file
(for optimized performance). Such a streaming file contains all required information to construct the GUI
from it, such as:

 Which objects there are

 The Position and size of these objects

 Images used to visualize the GUI

 Texts to be displayed on Buttons, Textfields etc.

 CommandObjects assigned to objects

 Attributes specific to a certain object (e.g. value range of a Slider)

 3D scenes, including 3D Objects (camera, mesh, light)

 and many more...
This information must be present within the streaming file, but the way in which it is represented is
variable. Therefore the file may have any format - and in fact it is not limited to a physical file somewhere
on a data storage, but could as well be read from a streaming source such as a network connection.

P a g e | 7

Another core concept of streaming is that each streamable object (i.e. each object within the GUI) is
capable of reading and writing itself from/to a stream. In other words the object itself knows which
attributes it must read/write in order to completely (re)store its current state. This has the advantage that
the overall complexity of the system is greatly reduced, since each object encapsulates its own
streaming details within its own code.
Streaming is therefore the key concept for GSE itself. The editor’s output is in fact a set of streaming files
in XML (or binary) syntax, which include all the information specified by the UI Designer during the
process of building the GUI within GSE.
The StreamRuntime is a basic Guiliani application, whose sole purpose is to initialize the Guiliani
framework for the given target platform, and to read the files generated by GSE. Whenever you hit “Run
Simulation” within the editor, or execute your final application on the target system, it will launch the
StreamRuntime, set up the Guiliani framework and read your UI designs from the streaming file(s) that
were previously exported from GSE. Of course you are free to extend the plain standard StreamRuntime
with application-code for your needs – its purpose is merely to serve as a slim entry point for getting your
user interface up and running.

1.3.2. Resource Management

A GUI usually consists of a variety of resources such as images, fonts and sounds which it uses to
visualize itself. An efficient management of these resources is required to optimize the memory and CPU
usage of your application. This is critical especially on embedded systems, where system resources are
typically very limited.
Guiliani enables you to share resources among various objects within the GUI and allows you to tune the
way in which they are loaded / unloaded so that it best matches your target setup. Usually this will be a
trade-off between loading-times and amount of memory usage.
The core of this principle is that all resources will be referenced via abstract identifiers (Resource IDs)
that serve as an additional level of indirection between concrete files on the file-system and their usage
within the GUI.

1.3.3. Command Objects

Command objects are used within GUILIANI to represent a certain behaviour in reaction to user input.
For example clicking on a button, or moving a slider may execute a command object. You may see a
command object as a predefined action (or chain of actions) that will be executed if a certain condition is
fulfilled. The command object's Do() method describes this action.

A typical use case for command objects is the communication between the user interface and the
underlying application logic. By deploying commands you will gain three major advantages:

 Commands are thread safe. They will be serialized and executed in the GUI's thread context.

 They decouple GUI and application development. You can start developing the GUI even while the
underlying application logic is not available - and vice versa. The typical work flow would be to start
off with empty command-stubs whose Do() methods only include debug messages and attach the
actual application-binding commands once they are available.

 Commands simplify automated testing. You can test the application-API through the respective
command-objects without the GUI.

P a g e | 8

2. The menu bar

The menu bar at the top of the screen is your direct access to most of the editor’s features, reaching from
workspace management, via editing of resources related to the project, to simulation and export of the
GUI.

Picture 1: menu bar

A short-cut icon list is provided on the left side of the menu bar to speed-up the access to frequently used
features “New Project”, “Save Project”, “Open Project”, “Undo” and “Redo”.

2.1. The File menu

The “File” menu allows you to create new projects,
save existing ones, add new dialogs, handle settings,
manage requirements and simulate the current GUI.

2.1.1. New Project

The “New Project” Menu is creating a new project.
Enter a name for your new project and specify a folder
on your disk where all project-relevant data will be
stored. The HMI Editor will create a subfolder with the
name of the project in the specified directory.

Picture 3: new project window

Picture 2: the file menu

P a g e | 9

2.1.2. Open Project

Use this option to open an already existing project.
Select a Guiliani project file (“.gpr”) from disk. The
corresponding project, including dialogs, resources,
languages etc. will be loaded.

Picture 4: open Guiliani-Project window

2.1.3. Recent Projects

Use this option to
open a previously
used project. Up to 6
projects will be
shown here.

Picture 5: recent projects window

P a g e | 10

2.1.4. New Dialog

Use this option to add a new dialog to the
currently opened project. You will be asked
to supply a name for this dialog (this will
also be used as the name of the Guiliani
streaming file in which this dialog gets
stored). You can also define the size of
this dialog in pixels. This for example
allows you to create non-full screen
dialogs, which are used as Popup-
windows.

2.1.5. Save Project

Use this option to save the current project to disk.
The streaming editor will store all relevant information
of the project, such as:
FontProperties.xml
ImageProperties.xml
ObjectHandles.xml
OtherResourceProperties.xml
Requirements.xml
SoundProperties.xml
TextProperties.xml
[ProjectName].gpr
[ProjectName]_dialogs.xml

Additionally there are xml files for each of your dialogs
and the corresponding folders:
fonts (containing all the fonts you added)
images (containing all the images you added)
save (auto-save information – for internal use only)
temp (temporary files created when you simulate your
project)

Picture 7: save project

Picture 6: create new dialog window

P a g e | 11

2.1.6. Settings

You can set different values for the project you are
working on and general GSE settings.

2.1.6.1. Global settings

Here you can define the directories for your
projects and for the GSE help file.
Additionally you can specify whether to auto-open
the console in case of errors (see Chapter 8 The
console window). The console will give you more
detailed information on occurring errors, by
displaying any log-output that is received from
GSE, GUILIANI or its widgets.

2.1.6.2. Project settings

The project settings defines the path to dialogs
which can be imported to the current project.
For the import and export of language files, the
language separator of the .csv file can be adjusted
(typically “;”). The Overwrite option enables the
overwriting of existing language files. If overwriting
is not enabled then existing languages will be
overwritten by the imported languages with the
same name.

Picture 8: global settings

Picture 9: project settings

P a g e | 12

2.1.7. Requirements

The “Requirments” option enables you to track and
assign project requirements. Using this dialog, you can
specify requirements for the current project and assign
them to dialogs and objects or mark dependencies to
other requirements. Additionally, you can export the
list of requirements into a “.csv” file.

Picture 10: requirements window

Picture 11: edit requirements window

P a g e | 13

2.1.8. Run simulation

Use this option to run a simulation of the current GUI.
This will perform a temporary export of your GUI and
immediately execute it in a stand-alone GUILIANI
application (called StreamRuntime). This application
runs independently of GSE itself and offers a lifelike
preview of your application, very similar to what it will
look like on the final target platform.

You are free to choose the resolution for the
simulation window and to select the resource sets that
will initially be used for the simulation. You may also
choose which dialog is loaded initially within the
simulation.

By default, the simulation will search for the GUI’s
resources right next to the runtime executable. If your
setup requires the resources to reside in a different
location, you may supply a path to this resource
directory here.

In case your GUI does not have a fully
opaque image as a background, you may
activate a definable background color,
which Guiliani will use as a background for
the simulation.

Picture 12: run simulation window

Picture 13: simulation window

P a g e | 14

2.1.9. Quit

This quits the HMI Editor. If there are any un-saved
changes in your GUI, you will be asked to save your
project.

2.2. The Edit menu

The edit menu offers you cut, copy & paste
functionality. You may select one or several objects
(e.g. by clicking them with the “CTRL” key pressed)
and cut, copy & paste them by selecting the
corresponding menu option. Note that you can also
use this to copy objects between different dialogs.

2.2.1. Find

Selecting find opens the “Search in dialog” dialog,
where you can search your project for a variety of
criteria. E.g. you can search for specific text strings,
for uses of a specific resource-identifier, or for an
object with a given ObjectID.

Picture 16: edit menu

Picture 14: quit dialog

Picture 15: quit and save dialog

Picture 17: search in dialog

P a g e | 15

2.3. The Layout menu

The layout menu supports you to arrange GUI objects
within a dialog.
“Arrange objects” lets you modify the hierarchy of
objects in the GUI-tree, by specifying the order in
which they are drawn. You may move one or several
objects to the front or background and will immediately
see the visual effect in the dialog window and the
object hierarchy.

Picture 18: layout menu - arrange objects

“Align objects” simplifies the arrangement of several
objects in the GUI, by aligning them in one of the pre-
defined manners. Note that for the center alignment
options the object you have selected first serves as
the reference point for the following objects, whereas
for the edge alignment options the edge that lies
farthest out in the selected direction serves as the
reference. That means if you selected five objects, and
then chose “Align left”, four objects will be aligned with
the first left-most object’s left border.

Picture 19: layout menu - align objects

P a g e | 16

2.4. The Resources menu

Use the resources menu to manage all resources of
your GUI, including images, internationalized text,
fonts and sounds. Each of those are handled in a
dedicated sub-screen.
Here you can export your project or import dialogs, too.

NOTE: If you want to search for a certain resource,
you can do it by using “Find unused resource-Ids”.

2.4.1. Manage Images

Guiliani is referencing images by an ID, which serves
as a symbolic name for the given image. This has two
major advantages:

1. You can simply change the actual image behind

an ID, thus greatly simplifying skinning for a GUI.
2. Resources can easily be shared among various

objects in the GUI and will still only occupy
memory once.

The “Manage images” screen
does allow you to import images
of various formats (PNG, JPG
and BMP) into the
Guiliani streaming
editor and to associate
them with an ID.
You can do so by
clicking the button
“insert new image”,
browsing your disk for
the desired image and
assigning an ID to it.

NOTE: To switch
between different
image sets the button
“Manage Sets” (2.4.6)
opens a new dialog
where you can create,
delete or rename them.
All sets share the same
IDs, but they may map
different images onto
them.

The “permanent”
checkbox allows you to
fine-tune the runtime
behaviour of your GUI.
Typically, images in
GUILIANI will be loaded

Picture 20: resources menu

Picture 22: images management window

Picture 21: manage images

P a g e | 17

when required, and unloaded
again once they are not used
anymore. This reduces
memory-consumption
but may result in
additional loading times
for the respective
bitmaps. Marking an
image as “permanent”
prevents it from being
automatically unloaded
again. This will speed

up your application (in particular
screen switches) but at the cost
of increased memory usage

Once an image is shown within
the “Manage images” screen, it
can be assigned to an object
within the current GUI.

2.4.2. Manage Texts

While it is possible to use string literals
within Guiliani, it is desirable to use Text
IDs instead. This enables you to easily
migrate from a single language to a
multi-language GUI by simply translating
the strings without recompilation of your
application.

In the “Manage Texts…” window, you
will find four dropdown boxes to select a
language, a reference language, a font
preview and a reference font preview.
The “Language for comparison”
(reference language) simplifies the
translation process. The “Current
language” is set visible in your GUI.
The “Current font preview” provides you
the opportunity to preview your texts in
available font styles. The “Reference
font preview” supports you to compare
your texts in different font styles.

NOTE: To switch between different text sets the button
“Manage Sets” (2.4.6) opens a new dialog where you
can create, delete or rename them. All sets share the
same IDs, but they may map different texts onto them.

NOTE: The dropdown boxes “Current
font preview” and “Reference font
preview” only contains fonts that were
created as described in section 2.4.3.

Enter your Text in the text input field of
the section “current language” and press
Enter.

Picture 23: new image window

Picture 24: text management window

Picture 25: import languages window

P a g e | 18

Add Text IDs by pressing the “new ID” button.
To delete, create or rename a text set, click the
“Manage Sets” button.

Text-sets associate Strings in a given language
with Text IDs. For example, the Text ID
“TXT_EQUALIZER” in the Text Set ‘German’
associates to “Klangeinstellung” while in the Text-
set ‘English’ it maps to “Equalizer”.
Additionally you can export and import
one or all of your language sets.

2.4.3. Manage Fonts

Fonts in Guiliani are referenced via “Font
IDs”. Each font ID represents one specific
font, with a defined font-face and size.
For example, the font ID
“FNT_ARIAL_HEADLINE” could have the
font size 20 and the font face Arial.

By assigning this font ID to every headline
of your GUI, the GUI design can easily be
changed by switching the Font set of the
project. The active “Font set” is set visible in
your GUI.

NOTE: To switch between different font sets
the button “Manage Sets” (2.4.6) opens a
new dialog where you can create, delete or
rename them. All sets share the same IDs,
but they may map different fonts onto them.

Add new Font IDs by pressing the “new
ID” button. The “insert new Font ID”
window is opened and you can enter or
browse for the font file. The Font ID will
be set automatically. Enter the font size
(in pixels).
(Please refer to 1.4.1 for an explanation
of the “permanent” attribute)

Create, rename or delete Font IDs with
the “Manage Sets” button.

If you would like to change the size or
source file, press the “change” button.

For deleting a selected font, click onto
the “remove” button.

2.4.4. Manage Sounds

Sound IDs are managed in the manage
sounds window. Here you will find the
play button for preview listening, a “new

 Picture 29: insert new Font ID window

Picture 27: export languages window

Picture 28: manage fonts window

P a g e | 19

ID” button, a remove and a change button. If
you press the “new ID” button, the “insert new
ID” window will open, which has got a play
button, too. Here you browse the sound file,
name its ID and choose between permanent
and not permanent.

(Please refer to 1.4.1 for an explanation of the
“permanent” attribute)

NOTE: To switch between different text sets
the button “Manage Sets” (2.4.6) opens a new
dialog where you can create, delete or
rename them. All sets share the same IDs, but
they may map different texts onto them.

Changing the sound scheme of your GUI is
done by changing the “Sound set” in the
manage sounds window.

Additionally you can create, rename and
delete sound sets by clicking on the
“Manage Sets” button.

To delete a sound, select it and click
onto the “remove” button.

2.4.5. Manage other resources

Within the „Manage other resources“ dialog
you can manage your own independent
resource files, which you can handle the
same way as the above mentioned
resources and which you can deliver with
your application workspace. Like images,
fonts and sounds, they are assigned to a
resource ID, but do not contain specific
content.

NOTE: To switch between different resource
sets the button “Manage Sets” (2.4.6) opens
a new dialog where you can create, delete or
rename them. All sets share the same IDs,
but they may map different texts onto them.

The advantages of using 'other resources' for
tracking your resource files are:

 Keep track of your project's resource
files in distributed development environments.

 Automatic export of other resources to the
project streaming target directory.

 Application wide access to 'other resource'
files using the Guiliani integrated resource
manager, i.e. by a unique resource ID.

 Possible encapsulation of other resources to
the Guiliani resource file, which contains all

Picture 30: manage sounds window

Picture 31: manage other resources window

P a g e | 20

resource files of the workspace project after
export.

For a new resource ID, or to change or remove an
existing one, just click the corresponding button.

2.4.6. Manage Sets

The manage sets window allows you, as its own name
says, to manage the different sets your GUIliani
application might use (i.e. Image, Text, Font and Other
resources)

The main view has four buttons, one for each of the
options you have for managing a set, and a close
button.
The possible options in the managing of a set are:
Create set, Delete set and Rename Set.

When you click “Create Set”, a list of elements is
made visible. Those are, a text field for introducing the
name of a new set, a check button which marking will
make visible a list of possible sets to copy the
information from into the newly created set, and a
button named “Create”, that will create the new set
once you have introduced a valid name.

The next option of manage sets is to delete a set. That
process begins by clicking the option “Delete Set”.
Then, a list of existing sets will be visible, for you to
choose which of them will be deleted. This deletion is
produced after you click the button “Delete”.

If you click “Rename Set”, the list of visible elements
shown contains a text field for writing the new name of
the set, a list of sets from where you have to choose
which set you’re going to rename, and a button named
“Rename”, that will rename the chosen set after a valid
name has been introduced.

Picture 33: Create … set

Picture 34: Delete … set

Picture 35: Rename … set

Picture 32: Manage … sets

P a g e | 21

2.4.7. Import 3D data file

Please note: Import of 3D models is only available for
targets based on OpenGL(ES) !

Import proprietary 3D description files (3Ds, Collada,
etc.) to the GSE workspace using the „Import 3D
datafile“ window.
The 3D scene control is made up of several 3D
objects, including 3D models. A model source is
needed, containing the model geometry, vertices and
surface descriptions. The 3D scene uses a Guiliani
proprietary format storing the 3D models, the so called
Model Binary Stream (MBS). It contains all relevant
information to draw a 3D model.
The MBS format is very small, optimized for
performance oriented embedded systems.

Two steps are necessary to set up a 3D model, so a
3D scene object can use it.

 Convert a proprietary 3D datafile to the MBS
format
First the 'Import 3D data file' wizard requests a 3D
input file. Currently only '.3Ds' files are supported
by the converter. The converter reads all 3D data

from the input file, passes it to a temporary
(invisible) 3D scene and creates a MBS file out of
it.

 Register MBS files to the workspace project
The second dialog is up to register this generated
MBS file to the workspace. Set a resource ID,
which will be assigned to the registered MBS file.
This ID is used by the 3D scene control to access
the MBS file.

After a MBS file is registered to the workspace project,
it can be assigned to and combined within several 3D
scene objects.

Picture 36: import 3D datafile window

Picture 37: example 3D scene

P a g e | 22

2.4.8. Export

An export will copy all files related to your project
(Images, fonts, language-files, XML files etc.) into a
directory of your choice, from where you can copy
them onto your target device.

The width and height fields will be forwarded to your
target system’s StreamRuntime, where they will
typically be used as the application’s initial size.

The various set names define which resources will be
loaded as defaults when starting the application. Note
that you can use the “select XYZ sets…” buttons to
exclude certain sets from the export, if you wish.

The resource directory is an optional path which will
be used as a prefix when the StreamRuntime
searches for resources on the target system. This is
useful if the resources will not reside in their standard
location right next to the executable.

You may wish to activate a default background color
for your application, in case you do not have a default
full-screen background image in each of your screens.

If you do not use any of Guiliani’s standard resources,
because you have your own designs, it is
recommended to uncheck the “Export Guiliani
Standard resources” checkbox, so that they will not be
exported.

The Create resource header / Create resource file
checkboxes offer you the possibility to automatically
create a Resource File from all resources which you
chose to export. This is particularly useful for systems
without a file-system, where you will compile all
resources right into the StreamRuntime executable.

Ultimately, the “Streaming Mode” Radiobuttons let you
specify whether you wish to export XML or binary
streaming files.

Picture 38: export window

P a g e | 23

2.4.9. Import

The import wizard is used to import Guiliani dialogs
to the current workspace. This allows you to import
GUIs that were created from manually implemented
Guiliani applications, or that have been generated
through conversion from other file formats.

To import one or more dialogs out of another GSE
project, pass the dialog .xml files to the “Import”
dialog. After clicking the “OK'” button the “prepare
resources” dialog appears. If all dialogs to import
are valid, the “prepare resources'” dialog should be
filled automatically. Afterwards the import process
starts.

In case of errors during the import, all resources,
which can be loaded, will appear. For all other
resources the user will be informed about the error.

Picture 39: import window

P a g e | 24

2.4.10. Find unused resource-Ids

A simple but very useful tool to identify resources,
which are not used in any dialog of the workspace
project. Use “Find unused resource ids” to keep the
project clean of resource residues.
First select a resource type to inspect, using the
combo box in the first line, afterwards press 'Find'.
Unused resources will be presented in a table, so that
they can be easily deleted by clicking the red X next to
the entries.
Note: Depending on the project size the search
procedure can take up to several minutes.

2.5. Custom extension

The custom extension dialog is a simple source code
generator. It creates C++ source files out of templates
and registers them as custom extension to the GSE
and StreamRuntime SDK project.
A recompilation of the GSE is needed, when using this
feature.

For more information and an example, please refer to
the document “custom_extensions.pdf”.

2.6. The Windows menu

All editor windows (Controls window, Workspace
window, Object Hierarchy window, Attributes window
and Dialog window) can be manually moved around or
can be hidden. To reopen them, use the windows
menu.

Picture 41: windows menu

Picture 40: find unused resource
ids window

P a g e | 25

2.7. The Help menu

You find all important information about the editor in
the help menu.
Choose “Documentation…” to open the Guiliani
Documentation containing information about the
editor’s widgets. Alternatively, pressing F1 opens the
documentation context-sensitively, depending on the
window which you are currently in. This is particularly
useful when you are looking further information on an
object which you are currently editing inside the
attribute view.
The “About” will open a window containing the editor
version, copyright and contact information.

NOTE: In some rare cases, the opening of the Help
File is leading to an error message like “Navigation to
the webpage was cancelled”. This is due to a
Windows security mechanism and can be fixed by
right-clicking on the CHM file, selecting “Properties”
and clicking the “Unblock” button.

Picture 42: help menu

P a g e | 26

3. The Workspace window

The Workspace window lists all dialogs of your project.
The highlighted dialog is currently visible in the Dialog
window. You can switch the dialog by selecting one of
the listed dialogs. Add a new dialog with the “+” icon or
delete the selected dialog with the “x” icon (at the
window’s bottom).

4. The Dialog window

Use the Dialog window to arrange objects on the
screen. Drag and drop them into groups or out of
group objects or resize them (use <CTRL> to
select multiple objects).

At the window’s bottom, you find shortcut icons of
the edit and layout main menu:

 Arrange object’s Z order

 Align objects

The dialog’s content is docked at the window’s
left corner. By expanding the Dialog window’s
size, you will not influence the dialog’s size itself.
But you may reveal objects which were off screen
and can edit them now.

If you want to resize the dialog, select the root of
the tree (first entry) in the hierarchy view and edit
the width and height variables in the Attributes
window.

 Picture 43: Workspace window

 Picture 44: Dialog window

P a g e | 27

5. The Attributes window

Edit objects in the Attributes
window. Add object specific
Image-, Text-, Sound- or Font
IDs, commands, layouters or
behaviours. Assign an ID to an
object to identify it in the Object
Hierarchy window and
reference it from other objects
through commands, behaviours
etc.

5.1. Images

Objects may have five different
states (for example the button).
These include: standard,
highlighted, pressed, grayed
out and focused. In the
Attributes window, you can add
the state-dependent image to
the object by clicking on the
appropriate image ID button
and selecting the desired
image in the Manage Images
window.

5.2. Texts

Objects with texts have a text string which can be edited in the “Text” input field of the Attributes window.
(see picture below). For internationalized Text, use the Text ID-Button and select a Text ID. If you do not
have a Text ID yet, click on Manage Texts in the dropdown box, which will open the Manage Texts window.
Here you can define Text IDs and translate your texts in different languages.

The position of an object’s text is per default fixed in the left corner. If you resize the object, its text neither
be repositioned nor resized. You can thus freely position a text inside it’s associated object by changing its
TextXPos / TextYPos and TextWidth/TextHeight attributes. Additionally you can set the texts alignment by
changing the VerticalAlignment- or HorizontalAlignment attributes.

Picture 45: Attributes window. Exp: edit specific object-texts in the text
input field if you do not wish to use a Text ID.

P a g e | 28

5.3. Fonts

While you can make changes to the text colors in the Attributes window itself, you will need the Manage
Fonts window for changing the font face or the font size. Press the TextFontID button in the attributes
window to select the object’s Font ID.

5.4. Commands

Commands encapsulate specific actions, so they can easily be reused qnd attached to objects within the
GUI. Commands can cover calls to functions of the underlying application log (e.g. Start Playback of an
MP3 File) or trigger actions inside the GUI itself (e.g. Switchin screens).
They can be directly assigned to certain widget that support them, for instance buttons or input fields.
Commands are typically executed by the widget when certain conditions are met or specific events occur.
For instance, the button executes its command when it gets clicked. The input field executes its command
when the user finishes input by pressing ENTER.

If you wish to execute commands from widgets that do not have ready-to-use Command-slots, you do so
by using the SingleCmdBehaviour. This predefined standard behaviour enables you to execute commands
for any object in reaction to various events (e.g. Clicking, Dragging, Getting the focus…).

There are predefined commands that you can use, like the Quit command that can be used to create a ‘quit
application’ button. Another command that Guiliani offers by default is the load dialog command which
loads another XML file at runtime. This can be used for creating screen switches or pop-ups. For real
applications you can extend this list with your own application specific commands and comfortably use
them within GSE.

Commands can be chained to execute more than one action at once. To do this, look for the attribute
‘AdditionalCmdCount’ in the attributes list and click the button ‘Add more’ next to it.

5.5. Behaviours

Behaviours are used for adding functionality to Guiliani’s event slots. Each widget has numerous event
slots that are called by the framework when specific events occur, like key presses, mouse clicks, mouse
drags and so on. Please refer to GUILIANI’s documentation for deeper information on this concept.

A powerful aid when creating your GUI will be the behaviours related to hotkey-handling and command
execution, these shall be explained now.

Behaviours and commands can be tied together by using two special behaviours, the MultiCommand and
SingleCommand behaviours.

Select the multiple commands behaviour for assigning commands to each of the event slots, or use the
single command behaviour to choose one event slot only and attach a command to it.

The Hotkeys behaviour reacts to key presses by the user. It is triggered whenever a key press occurs and
is not handled in any way, for instance by a widget. Keys are mapped to object IDs: When a defined key
press is detected, the mapped object is searched and, if it was found, is ‘clicked’. In other words, you can
use this behaviour to simulate clicking on objects through keyboard keys.
The Hotkeys behaviour should be added to a parent object (the root of an object group). Add the ASCII key
code in the KeyContent text input field. You can remove the key mapping by pressing the X-icon on the
right side. Map the behaviour to an Object ID by selecting it through the appropriate button. If the user
presses the key, the mapped object will react like it was clicked, for example, a check box will switch from
selected to unselected when the key is pressed.

P a g e | 29

5.6. Basic object specific attributes

5.6.1. Position

Every object has an X and Y Pixel-Position in your GUI. If you add a new control to your GUI it will be
displayed in the left corner (zero-point) of your GUI, meaning its coordinates will be X=0 and Y=0. Mind that
Guiliani can position objects sub-pixel accurate, so X or YPos inputs like 0.5 are possible.

Positions are relative to object’s parents, so an object that seems to be located in the middle of a dialog
does not necessarily have coordinates that are close to the dialog’s center. Instead, the coordinates
express an offset to the object’s parent (the container that contains this object – look for the object that is
one level up in the hierarchy view).

5.6.2. Width and height

An object’s width or height is given in pixels and can be changed in the Attributes window, or by dragging
the corners of the object in the preview window. .

5.6.3. Focusable, grayed out, disabled and invisible

A focusable object can receive the focus in the running application. This is necessary if the object is
supposed to be selectable via the keyboard / cursor-keys.

A grayed out or disabled object will not react to user input in the running application, so it cannot be clicked
and will not be focusable either.

An invisible object will not be displayed in your application and will therefore also not react to any events.

5.6.4. BehaviourClassID

Choose a behaviour by clicking the button and selecting a behaviour class ID from the list. The chosen
behaviour’s specific attributes become visible in the attribute list in the rows following the class ID. See also
commands and behaviours.

5.6.5. LayouterClassID

Layouters are used to automatically influence the position and/or size of child objects within a composite
object. For instance, the LAYOUTER_ANCHOR can be used to ‘fix’ the edges of a widget to its parent. Try
this by creating a composite object, putting an image inside it, assigning the LAYOUTER_ANCHOR to the
image, activating the “AnchorBottom” and “AnchorRight” check boxes and then resizing the composite
object. You will see how the distance of the image’s bottom and right edges to the respective parent’s
edges are always kept the same, moving the image around as you resize its parent.

There are further layouters, for example for automatically arranging child objects in a list container. Please
refer to the GUILIANI documentation for details.

P a g e | 30

5.6.6. Object ID

Object IDs are symbolic names. Assign an object ID to your objects to find it in the Object Hierarchy
window. Do this by adding a new Object ID in the Attributes window.

Note that Object IDs are also used by many commands and behaviours in order to reference specific
objects inside the UI.

6. The Object Hierarchy window

The Object Hierarchy window displays all GUI objects
contained within the selected dialog including their
hierarchical structure. Objects that cannot be seen on
the Dialog window because they are below other GUI
elements can be selected in the Object Hierarchy
window instead.

For changing the hierarchical order of a GUI Element,
use the arrow icons at the bottom of the window. Mind
that the only possibility to extract a group’s sub-object
is to drag and drop it out of the group on the Dialog
window.

Delete objects by clicking on the delete icon.

You cannot change names (object IDs) of GUI-objects
and group names in this window, but in the Attributes
window.

Declutter the workbench by temporarily hiding GUI
objects. Do this by clicking on the visibility check
boxes.

7. The Controls window

You will find all Guiliani Standard Controls in the
Controls window. If you click on one of the icons, a
new instance of that control will appear in the upper
left corner of the Dialog window.

7.1. Image

After clicking on the image icon in the Controls window,
a dummy image will appear in the left corner of your
GUI. Now you can edit your new image in the
Attributes window.

Picture 46: Object hierarchy window

Picture 47:
Controls window

P a g e | 31

The Guiliani Standard Image has one Image ID which
by default is a placeholder image.

By selecting an Image ID in the Attributes window, the
imaged is stretched to the size of the widget. If you do
not wish this to happen, deselect the Check box
StretchBlit in the Attributes Window. This leads to the
image being drawn with its original size and being
centered in the widget rectangle.

The Alpha Channel influences the transparency of your image. The value 0 means that this image is
invisible, 255 means it is fully visible.

7.2. Button

Buttons have five Image IDs, one for each state (standard, grayed out, highlighted, focused, and pressed).

A button is an ‘active’ widget that can be focused and clicked by default. A command can be attached to it
to provide a functionality.

7.3. Text field

Use text fields for displaying texts – both internationalized or hard-coded - inside your GUI.

7.4. Check box and radio button

Check boxes and radio buttons have ten Image IDs for the different states standard, grayed out,
highlighted, focused and pressed, each in selected and unselected status.

7.5. Elements button

A scaled standard button looks distorted. An elements button can be scaled in all directions without losing
its look. One status of an elements button consists of nine images: Four corners, four edges and an image
for the center. Like the standard button, the elements button has five states (standard, grayed out,
highlighted, focused and pressed). This means you will need 45 images for drawing an elements button.

7.6. Icon button

The icon button is a standard button with an additional image as overlay whose position can be changed
independently. Both the main button image and the icon have five states (standard, grayed out,
highlighted, focused and pressed).

P a g e | 32

7.7. Horizontal and vertical Slider

A slider has these images: A background image and a knob which can be normal, highlighted and
pressed.

Change the slider’s orientation from horizontal to vertical or vice versa by selecting the appropriate slider
SLD_HORIZONTAL or SLD_VERTICAL.

In the BackgroundMargin input field you can shorten the length of the background image without
influencing the span in which the knob can be moved.

By default, the knob can be moved in the span which is as long as the background image. If you would
like to reduce the span-size, edit the width input field of the horizontal slider or the height input field of the
vertical slider.

To change the sliders starting point (from left to right or from up to down), switch from
BASE_AT_MINIMUM to BASE_AT_MAXIMUM.

Edit the value range in the MinValue and MaxValue input field and influence the StepSize as desired. You
may choose 100 as a MaxValue and StepSize 10 for example if you want to display 100 percent and the
slider showing every 10 percent of it.

Value represents the current value within the defined range. It does thus also define the position of the
knob within the slider.

7.8. Progress bar

The progress bar is quite similar to the slider’s attributes. It has less images, one for the background, the
other one for the bar itself.

The bar can be positioned relative to the left corner of the background image (edit the BarX and BarY
value). The width and height of the bar image can be changed, too (BarWidth and BarHeight).

The progress bar has two ProgressBarTypes.
Choose one of the two Loop modes.

Edit the value range in the MinValue and MaxValue input field and influence the StepSize just as you wish.
You may choose 100 as a MaxValue and StepSize 10 for example, if you want to display 100 percent and
the progress bar showing every 10 percent of it.

The ProgressBar can show a timed animation. The TimeSlice attribute influences the delay between
animation steps. It defaults to 300 milliseconds.

You can change the fill direction to right-to-left with the ReverseFill check box. Change it to bottom-top or
vice versa with the DrawVertical check box.

7.9. Input field

The input field consists of an editable text and a background object, the parent of the text. The
background object has standard attributes such as Position or height only. To edit the attributes of the text
input, select it in the Object Hierarchy window or in the Dialog window.

The input field can be used for entering passwords (PasswordMode).

P a g e | 33

Decide if the input may be numbers only or if all characters shall be allowed (AcceptedCharSet).

Choose colors for the text states (standard, highlighted, pressed, grayed out) and for the text background
highlight (SelectionColor). Set the Font ID, the Font Spacing and the text alignment (top, left, right, bottom,
center).

Note: This input only supports single line input. The SingleLine check box should always be selected.

Position the text within the background object with XPos and YPos or within its border. Do this by
changing the TextXPos and TextYPos value. If the TextHeight has the same value as the Height value,
the text will be positioned in the height’s middle.

7.10. Combo box

The ComboBox offers a Drop-down list of entries from which users can make a selection. Advanced
features include the possibility to search for entries by typing substrings into the header and to add new
entries at runtime in the same way.
Pleas be aware that even though you can create and edit the ComboBox inside GSE, you will currently
not be able to fill it from there. Nevertheless you can access the ComboBox from source-code via its
ObjectID and dynamically fill it at runtime.

7.11. Radio button group

The radio button group is a specific composite object in which you can align radio buttons. In a radio
button group, only one radio button can be selected. All others are unselected, even if all radio buttons
have the Selected checkbox in the Attributes window selected.

7.12. Composite object

Composite objects serve as containers which you should use to group other object in. This has several
advantages:

 Moving the container will move all child objects, as well

 Resizing the container can resize the children (when using Layouters)

 Marking a container as Invisible will render its children invisible, too

 You can use the container to clip its content. (That means everything contained inside the
Composite object, but positioned outside its dimensions will not be visible)

7.13. Reposition composite

A reposition composite object is a composite object which will automatically reposition its child objects.
You can align all children at the top, bottom, left or right of the composite and define the space between
the child objects and the space to the composite-border. You can even have a composite object in a
reposition composite and vice versa.
Note: The repositioning effect will only take place when resizing the container. Therefore, drag its lower
right corner to see the effect.

P a g e | 34

7.14. Scroll view

A scroll view object is a specific composite object that represents a view window onto a larger scrollable
area contained therein. This is useful when you need to make a larger amount of information or widgets
accessible on limited display space.

Take a look at the Object Hierarchy window. You will see that the scroll view object consists of several
objects. Two of these are a vertical and a horizontal scroll bar. An additional composite object keeps the
actual content which shall be visible in the scroll view window. As long as the content is smaller than the
scroll view window, the scroll bars are set to invisible. If the content’s height (or width) increases, the scroll
bars will be automatically visible so that you can scroll the content. The scroll bar’s visibility policy may
also be changed so that they are always visible.

7.15. Center focus container

The center focus container changes its own position with an animation so that the focused child object is
centered on a specific point (try it; it is much easier to see than to describe). You can define this “center
point”with the CenterX and CenterY coordinates, that are given relative to the Center Focus Container’s
parent.

7.16. Carousel

Objects you add to the carousel will automatically be positioned in a 3D rotating wheel. The focused child
is always moved to the ‘front’ of the carousel with an animation. The carousel’s tilt angle and radius can
be set with the respective attributes. The radius should be large enough to allow children to be positioned
far enough apart from each other. However, keep it small enough to avoid clipping of the children at the
carousel’s edges.

7.17. Animated image

Add as many images to the animated image icon as you wish. Choose the FrameDelay, which is the time
after which the next image is displayed. Select the check box Repeat, if you want the animated image to
run in a loop.

7.18. Image stack

Image stack will be used for showing pseudo 3D transitions: one image fades out into the background
while getting smaller, another one comes in from the front, getting smaller and fading in. The opposite
direction works similarly: the images appear to come from the back to the front while fading. In order to
see the effect you must run a simulation of the GUI, focus the image stack object and cycle through it
using the PageUp / PageDown keys. (Of course, it is possible to map these control keys onto other inputs
for the target hardware.)

P a g e | 35

7.19. Scrolling text field

With this control, text can be scrolled from the right to the left or vice versa, as well as from top to bottom
or vice versa. In addition, you can define the scrolling speed.

7.20. 3D scene

The 3D Scene control consists of a collection of 3D objects, that builds a 3D world. The 3D scene is the
bridge between a 3D world and the Guiliani 2D render surface.
When using the 3D scene, it creates a default world, which is a colored cube, a camera and a light object.
Afterwards the scene can be modified on your needs using the attribute window. 3D objects can be added,
removed and modified.
To add 3D models to the world, you need to add 3D MBS files to the workspace, which contains 3D
models (see section 'Import 3D data file' for details).

7.21. Example control

This control is an example CGUIObject implementation that draws a rectangle with configurable border
width and configurable colors. This is available as source code and you can use it as an example for
creating your own controls (see Custom extension).

P a g e | 36

8. The console window

The console window contains all the log output generated by GSE, GUILIANI or its widgets.

For developers the console is very useful, since it can contain valuable information on your newly
developed custom widget, that simply refuses to do what it is supposed to do. It will for instance let you
know if you are trying to access an illegal image resource, or if you are trying to find an ObjectID which
does not exist.
For users of GSE that are non-developers the console can still prove helpful, for example when for some
reason one of the project’s XML files got corrupted. In this case the console will yield information telling
you which file was corrupted, what GSE expected to read, what it actually did read, and likely also the
line-number within that file.

All in all it is recommended to have a look at the console whenever something goes wrong and you need
more details on the cause of the problem. (Note: The same information can also be found in the .log file
generated by GSE).

9. Tool tips

You can find tool tips when you rest the mouse pointer above an icon (e.g. in the dialog window). This will
give you a short information about what the function is used for

P a g e | 37

10. Contacts

If you have any questions on Guiliani or the Guiliani Streaming Editor, please feel free to contact:

support@guiliani.de

Phone +49 (0)69 1 53 92 12 29
Fax +49 (0)69 1 53 92 12 15

www.guiliani.de

This project is supported by the Federal Ministry of Economics and Technology by a resolution of

the German Parliament.

mailto:support@guiliani.de
http://www.guiliani.de/

